
S&TR October/November 2011

Lawrence Livermore National Laboratory14

 2011 R&D 100 Awards

CONSIDER the common desktop computer. The hardware
that runs all of an application’s many independent execution

units, or processes, is called a core. Most desktops have
between one and four cores. These computers cost between a
few hundred and a few thousand dollars. In contrast, today’s
largest supercomputers contain hundreds of thousands of
cores and cost hundreds of millions of dollars. The scientific
applications these computers run—which often culminate
from decades of multiperson development efforts—are equally
costly. Single faults, or bugs in the codes, that disable only
one process can halt an application’s execution. During the
resulting debugging process, developers use up their time
locating the bugs, with delays consuming machine hours and
racking up significant costs.

Extreme-scale systems present an additional hurdle. Current
debugging tools were never designed to scale to such sizes.
Therefore, at scales of a thousand processes, these tools can take
minutes to perform a single debugging operation, and typically,
each operation is performed tens to hundreds of times during
just one debug session. “Our debugging tool is our response to
this problem,” says computer scientist Greg Lee. Lee and fellow
Livermore computer scientists Dong Ahn, Bronis de Supinski,
Matthew LeGendre, and Martin Schulz, with collaborators at the
University of Wisconsin at Madison and the University of New
Mexico, designed and developed a unique R&D Award–winning
solution called the stack trace analysis tool (STAT). The tool can
identify errors in code running on today’s largest machines. It will
also work on the even larger machines expected to roll out over the
next several years.

Lightweight,
Scalable Tool
Identifies
Supercomputers’
Code Errors

S&TR October/November 2011 Stack Trace Analysis Tool

15Lawrence Livermore National Laboratory

causing the hang. STAT also derives the relative execution
progress of each application task, which is useful for determining
problematic application processes. “A culprit may have made the
least execution progress through the code because it’s stuck in a
computation phase that the rest of the application processes have
already passed,” Lee says.

The tool has run on a wide range of supercomputer platforms,
including the IBM BlueGene family of machines and several of the
world’s fastest as reported by the Top500 Supercomputer Sites list.
STAT also runs on the Cray XT and Cray XE high-performance
computers and has been demonstrated at 216,000 cores on Oak
Ridge National Laboratory’s Jaguar system, which once reigned as
the fastest supercomputer. STAT was recently run to discover a bad
node on IBM BlueGene/L. “In this case, STAT definitely proved
itself useful,” says Lee. “At best, finding this problem would have
bordered on impossible without STAT.”

The team is excited about the recognition and publicity the
award will bring and looks forward to helping others adopt the
tool. In the future, the scientists hope to complete their research
and turn STAT over to a company for commercialization.

—Kris Fury

Key Words: bug, computer core, debugging, extreme-scale computing
system, high-performance computing, R&D 100 Award, stack trace
analysis tool (STAT).

For further information contact Greg Lee (925) 424-6554

(lee218@llnl.gov).

“The approach of other debuggers provides so much detailed
information about each process that they are inherently unusable
at such extreme scales,” says Lee. STAT, on the other hand, was
designed to provide meaningful information quickly. “Just as
medical staff can call ‘STAT’ to get immediate action and help
patients in distress, when users of supercomputers need to debug
an application at extreme scales, they can call on STAT,” says Lee.

Getting Help STAT
Errors in computer codes arise not only in the initial

development phase of applications, when the code is beginning
to take shape, but also when new features are added to mature
software. These bugs sometimes lay dormant even in heavily tested
and widely used codes, only to emerge when run with a new data set,
on a new platform, or at larger scales. Scientific codes designed for
high-performance computing systems provide additional challenges
because their complex codes incorporate multiple mathematical and
scientific software libraries.

STAT works by detecting and grouping similar processes at
suspicious points in an application’s execution. It quickly and
automatically identifies anomalies and outliers—processes that
cannot be grouped or whose behavior is substantially different—
because they often indicate flawed execution. STAT achieves this
grouping by dynamically examining the state of each process and
extracting the call stacks—the sequence of function calls—that led
to the current point of execution. In this way, STAT can relate the
state of the processes to each other.

Speed Daemons
STAT offers varying levels of detail in the call stacks, from

coarser function granularity to specific source-code line numbers.
Because it gathers stack traces across the entire application, it
provides a global view of what every process is doing. These stack
traces are merged to reduce the problem search space, so users
can identify a small yet representative subset of tasks on which to
apply heavyweight analysis.

Another important scaling advantage that STAT has over similar
tools is its lightweight design, which allows the tool to maintain
interactive response times. Most scientific applications make full
use of all available processing power and memory capacity, which
leaves few resources for tools. STAT’s daemons—tool processes
that run alongside the application—have very low computational
and memory requirements.

Pinpointing Problems
STAT can not only distinguish a process that is stuck in

a single location in the code but also pinpoint the exact task

The Livermore development team for STAT: (from left) Greg Lee, Dong Ahn,

Martin Schulz, Matthew LeGendre, and Bronis de Supinski.

The stack trace analysis tool (STAT) includes a powerful and intuitive

graphical user interface that allows the user to identify quickly where a

bug exists in an application. STAT automatically analyzes the state of the

application and pinpoints potential bug locations.

